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ABSTRACT 
The recent rise in popularity and scale of social media services 
(SNSs) has created the growing necessity for SNS-based 
information extraction systems. A popular application of SNS data 
is health surveillance for predicting the outbreak of epidemics by 
detecting diseases from text messages posted on SNS platforms. 
Such applications share the same logic: they incorporate SNS users 
as social sensors. Such social sensor approaches also share a 
common problem: SNS-based surveillance can be reliable if 
sufficiently numerous users are active, but small inactive 
populations produce inconsistent results. To overcome this problem, 
this paper presents a novel approach using indirect information 
covering both urban areas and rural areas within the posts. This 
system uses not only direct information, but also indirect 
information that mentions other places. Indirect information is less 
reliable (too noisy or too old) than direct information. Therefore, 
we do not use the described data directly. Instead, we consider that 
indirect information inhibits direct information. For example, when 
indirect information appears often, we consider that everyone 
already has a known disease, leading to a small amount of direct 
information. In the experiment using three years’ long collection of 
tweets (7 million influenza-related tweets in Japanese) described 
herein, this proposed approach improved the detection performance 
not only in rural cities, but also in urban cities, thereby 
demonstrating the feasibility of this approach.  

CCS Concepts 

•Information systems�Information systems applications; 
•Computing methodologies�Natural language processing; 
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1. INTRODUCTION 
    The increased use of social media platforms entails more widely 
shared personal information. Twitter, a micro-blogging platform 
that enables users to communicate by updating their status using 
140 or fewer characters, has attracted much attention of researchers 
and service developers because Twitter can be a valuable personal 
information resource. These approaches share the important 
premise that Twitter users can be human sensors for event detection 
[1]. The feasibility of such approaches has been demonstrated on 
various occasions, such as earthquakes, outbreaks of disease, and 
stock market fluctuations. 
    This study particularly examines such applications for detecting 
disease epidemics, by taking advantage of the swiftness of the 
information transmission of Twitter, which outperforms other 
traditional methods of medical reporting means. Numerous 
Twitter-based disease detection and prediction systems have been 
developed worldwide. Such systems have also been demonstrating 
some weaknesses. One important deficit is the imbalance of the 
population distribution because most SNS users reside in urban 
areas and because analysts have difficulty getting a sufficient 
amount of data from rural areas. Especially, Japan’s user 
population is strongly concentrated in a few central cities, such as 
Tokyo and Osaka. Other users live outside the area, in less 
populated regions in Japan. This population bias causes difficulties 
in the consistency of performance. Fig. 1 shows the geographic 
distribution of our dataset (7,666,201 influenza-related tweets 
during 2012–2015). Rural areas have fewer young people than 
cities do. Therefore, even fewer SNS users are available. More 
detailed data are presented in Fig. 2. Except for a few high-
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Figure 1: Population bias in Twitter-based Influenza 
surveillance. Most Twitter users are in urban cities (such as 
Tokyo and Osaka). Other cities are adversely affected by a 
shortage of data, which biases influenza detection there. 
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population cities, most areas have fewer tweets. Some such areas 
have numerous influenza patients. 
    To overcome this problem, we use information from broader 
targets than in earlier studies. One solution is using indirect 
information that has been discarded in previous studies. Examples 
of such indirect information are described below. 

 (1) My grandma in Kyoto is in bed with flu. 

 (2) NEWS: classes in Osaka have been closed because of the flu 

    The fundamental idea is presented in Fig. 3. Although tweets are 
concentrated in urban areas, indirect information covers wider 
areas. Indirect information is unreliable (sometimes too noisy or too 
old). In example (1), the time ‘the grandma’ caught flu is unknown. 
In example (2), the flu had already spread to the area. Because of 
the difficulties presented above, earlier studies have not used such 
indirect information to any great degree. 
    An example of the tweet timeline is presented in Fig. 4. Direct 
information (black line) shows a similar timeline to the gold 
standard timeline (red area). However, after the peak of epidemics, 
the amount of direct information decreases, leading to 
underestimation errors. In contrast, indirect information (red line) 
shows complex phenomena: it has many peaks, especially before 
peaks. Apparently, indirect information is difficult to use. 
   This study uses a different approach that specifically examines 
the relation between indirect information and the human motivation 
to tweet. We consider after the boom of influenza, the topic of 
influenza has become out-of-fashion, inhibiting people’s 
motivation to tweet about the flu. In other words, this study assumes 
that people prefer reporting new information, and that they are 
insensitive to already-propagated information. 

    Another difficulty is detection of the degree of the propagated 
information. This study specifically examines the amount of 
indirect information because it indicates a person in different places 
also knows of the event. Consequently, this study examines a 
hypothesis: the degree of propagation (popularity) is correlated 
with the amount of indirect information. 
    In the early stage of a season, most people report influenza 
precisely. Because the indirect information is propagated widely, 
most people know of the influenza epidemic, and become 
insensitive to the event. We designate such inactivated people as 

 
Figure 3: Most social sensor-based approaches consider people 
as sensors (right and center). Although social sensors exploit 
only direct information, the proposed activity uses indirect 
information (right). 

 
Figure 4: Amounts of direct and indirect information in a tweet 
timeline in Hokkaido in 2013. Direct information (black line). 
Indirect information (red line). Gold standard timeline (red area). 
The x-axis shows the date. The y-axis indicates the number of 
tweets and the number of patients (normalized by the max value in 
the SEASON). 

Table 1: Area resolution of surveillance 

 Target (# of areas) Data size (million tweets) 

Aramaki [16] Japan (1 area) 300 

Achrekar [27] US (10 areas) 1.9 * 

Culotta [28] US (1 area) 0.5 

Kanouch [29] Japan (1 area) 300 

De Quincy [30] Europe (1 area) 0.14 

Doan [31] US (1 area) 24 * 

Szomszor [32] Europe (1 area) 3 

* indicates the number of users (million users) 

 

 
Figure 2: Numbers of influenza patients (bar graphs) and tweets related to influenza (line) in each prefecture. 47 prefectures are ordered 
based on prefecture codes. 
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trapped sensors. This study investigates the degree to which this 
model improves the event detection performance. 
    This study uses a Twitter platform based on Japanese language 
in particular. However, the results are not expected to depend on 
specific platform or language because no platform and language-
specific technique is used. 

2. RELATED WORK 
2.1 Social Sensors for Health-related Events 
    Social media are used to detect various events such as 
earthquakes [1–3], political elections  [4–6], and stock prices in a 
market [7]. Among the various applications, health-related event 
detection has been drawing much attention from researchers in 
areas such as air pollution [8], online doctor reviews [9], West Nile 
virus [10], cholera [11], E. coli outbreak [12], Dengue fever 
outbreak [13], and influenza [10, 14–32]. One review of the 
literature has reported that half of SNS-based surveillance are 
related to influenza (15 of 33 papers) [26]. That is true because 
influenza has been a major worldwide public health concern. 
Especially, unexpected influenza pandemics, which have been 
experienced three times already in the 20th century (e.g. “Spanish 
flu”), are global issues. 
    Twitter is the most frequently used social medium for influenza 
detection [10, 14–32]. Studies have consistently demonstrated high 
correlation between the number of influenza patients and the actual 
influenza-related tweets. However, most studies target only 
country-level detection. Furthermore, surveillance of detailed areas 
is rarely challenged (Table 1). One reason is the volume shortage 
of tweets in small areas. Therefore, it remains unknown whether a 
small rural area can achieve the same high-performance or not. One 
point of this study is to investigate performance in areas with small 
populations. 
2.2 Location Estimation 
    Location estimation including estimation of one’s place of 
residence is an important issue of this study. Although the simplest 
and most reliable is to use GPS information, many difficulties can 
arise. For instance, many users turn off this function to maintain 
privacy of their information. As a result, location estimation from 
the SNS original text is necessary. Related studies have identified 
two difficulties in location estimation of SNS texts: (1) the first is 
detecting a location name in tweet messages; (2) the second is to 
disambiguate the location names. 
    For the first, a collection of location names is necessary. Usually, 
Wikipedia has been used as the basis of a location name dictionary. 
We also used a location name dictionary obtained from Japanese 
Wikipedia. 

    To resolve the second difficulty, several researchers have 
examined location name disambiguation methods [33]. Location-
indicative words from tweet data are found by calculating the 
information gain ratios. That earlier research effort shows that 
words improved the estimation performance of the user location. 
They concluded that the procedure requires little memory: it is fast. 
Moreover, lexicographers can use it to extract location-indicative 
words. A probabilistic framework was developed to quantify the 
spatial variation manifested in search queries [34], which brings 
them to spatial probabilistic distribution models. One study [35] 
estimated geographic regions from unstructured, non-geo-
referenced text by computing a probability distribution over the 
Earth’s surface. Another study [36] estimated a city-level user 
location based purely on a content of tweets, which might include 
reply tweet information, without the use of any external 
information, such as a gazetteer or IP information. Two 
unsupervised methods [37] have been proposed based on notions 
of Non-Localness and Geometric-Localness to prune noisy data 
from tweets. One report [38] described language models of 
locations using coordinates extracted from geotagged Twitter data. 
    Although this study uses geocoding services provided by Google, 
incorporating such techniques can support future studies. 

3. MATERIAL 
    Data used for this study are of two types: Twitter data for the 
proposed system (Section 3.1), and the timeline report of the 
number of influenza patients, which are gold standard data (Section 
3.2). The dataset is available at the data archive site. The data 

Table 2: Data description. 

ALL 
Duration 2012/08/02-2016/01/03 

# of tweets (Size) 7,666,201 (2.275�GB) 

SEASON2012 
Duration 2012/11/01-2013/05/31 

# of tweets (Size) 1,959,610 (729.4�MB) 

SEASON2013 
Duration 2013/11/01-2014/05/31 

# of tweets (Size) 501,542 (143.7�MB)* 

SEASON2014 
Duration 2014/11/01-2015/05/31 

# of tweets (Size) 2,736,685 (808.2�MB) 

*We were unable to collect sufficient tweets in SEASON2013 because 
of the specification change of Twitter API.  

Table 3: Proposed scope. 
Tweet P/N D/I 
BBC News: Okinawa is influenza pandemic P I 
Okinawa suffers a major outbreak of influenza P D 
RT: My mother got flu today P I 
I got influenza shot today N D 
Dr said influenza will be late in this season N I 

P/N denotes positive (P) or negative (N); D/I denotes Direct information 
(D) or Indirect information (I). Note that we used retweet (RT), too, in 
the same manner as normal tweets (non-RT tweets). 

 

 

Figure 5: Influenza surveillance system modules. 
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include the number of tweets with the gold standard data. We have 
also developed visualization and a data distribution site1. 

3.1 Tweet Data 
    Our data are a collection of influenza-related tweets for three 
years. We have been collecting influenza-related tweets written in 
Japanese via the Twitter streaming API for five years (from 
2012/08/02 to 2016/01/03). All tweets contain influenza-related 
Japanese keywords “I-N-FU-RU (flu in Japanese)” or “I-N-FU-
RU-E-N-ZA (influenza in Japanese)”. These data include noise 
tweets that include a keyword, but do not index an influenza patient. 
Examples of such noise tweets are mentions of “influenza 
vaccination.” This study calls such noisy tweets influenza negative 
tweets. To filter out such influenza negative tweets, we have trained 
the SVM-based classifier using the training set. The training set 
consists of 5,000 tweets extracted randomly from the corpus. 
Human annotators annotated these data.  
    Because influenza epidemics appear in the winter, we split the 
data as shown below. 

- SEASON2012: 2012/11/01-2013/05/31 
- SEASON2013: 2013/11/01-2014/05/31 
- SEASON2014: 2014/11/01-2015/05/31 

Details of the test data are presented in Table 2. 
3.2 Gold Standard Data 
    The gold standard data are weekly reports from the Infectious 
Disease Surveillance Center (IDSC). The report presents the 
number of influenza patients for every Japanese prefecture (47 
areas). This test set enables week-based evaluation in 47 areas. 

4. INFLUENZA SURVEILLANCE SYSTEM 
    The system comprises three modules as shown in Fig. 5: a 
positive/negative (P/N) classification module (Section 4.1), a 
location detection module (Section 4.2) and data aggregation 
module (Section 4.3). For the aggregation, we use two methods: a 
LINEAR model using three types of location information (Section 
4.3.1) and a TRAP model (Section 4.3.2). 
4.1 NLP Module: Positive or Negative 
    Using the tweet corpus described in Section 3, we built a 
classifier that judges whether a given tweet is positive or negative. 
This task is a sentence binary classification (such as spam e-mail 
filtering). We used a SVM-based classifier under the bag-of-words 
(BOW) representation. We split a Japanese sentence into a 
sequence of words using a Japanese morphological analyzer, 
MeCab (ver.0.98) with IPADic (ver.2.7.0)2. A polynomial kernel 
(d=2) is used. The other parameters are the same as described in an 
earlier report [16]. Several earlier studies [29] have not used retweet 
(RT) texts, but they are used for the present study. 
    To build the training set, a human annotator assigned one of two 
labels: positive or negative. In this labeling, we regarded a tweet 
that meets the following two conditions as positive data. 

l Condition 1: Patient 
One or more people who have influenza are likely to be present 
around the tweet person. Here, we regard “around” as a distance 
in the same city. For cases in which the distance is unknown, 
we regard it as negative. Because of this annotation policy, the 
re-tweet type message is negative. 

l Condition 2: Tense 

                                                                    
1 http://mednlp.jp/influ/ 
2 http://taku910.github.io/mecab/ 
3 http://www.geocoding.jp/ 

The tense should be the present tense (current) or recent past. 
Here, we define the “recent past” as the prior one-day period: 
“yesterday”. 

    Using the constructed influenza corpus (Table 3), we trained the 
SVM-based classifier. The corpus comprises pairs of sentences and 
a label (positive or negative). For more precise information related 
to the corpus, previous reports are helpful [16]. 

4.2 Location Detection Module (Direct or 
Indirect) 
    We use three methods for location detection. 

4.2.1 GPS Information (GPS)-Direct Information 
    A tweet contains GPS data if a Twitter user allows use of the 
location function. However, most users turn off this function for the 
privacy reasons. Currently, the ratio of tweets with GPS 
information is only 0.46% (=35,635/7,666,201) in our dataset. 

4.2.2 Profile Information (PROF)-Direct Information 
    Several Twitter users describe the address in profile. We regard 
the Tweet person as near the profile address. The ratio of tweets 
with profile location is 26.2% (=2,010,605/7,666,201). This 
information is used in the study [16]. To disambiguate the location 
names, we use a Geocoding service3 provided by Google Maps4. 
Specifically, we sent queries about Twitter user’s locale to Google 
Maps and obtained returned results in JSON format. We wrote a 
simple parser in Python to parse these returned results to get 
information about the country. 

4.2.3 Indirect Information (IND) 
    Several tweets contain the location name in the contents, such as 
“My friend in OSAKA caught flu.” This study handles such indirect 
information. To detect the location name in contents, we use a 
location name list, consisting of prefecture names and famous 
landmarks. The ratio of tweets with indirect information is 4.7% 
(=362,349/7,666,201). 
    The conflict of three geographic data is resolved as shown in Fig. 
5. We use the location if GPS information is available. Otherwise, 
if a user profile information includes address data, then we use that 
information. The address data are geocoded by the geocoding 
service API provided by Google. Otherwise if the tweet’s content 
contains location name (prefecture names), we consider it as the 
indirect information in the prefecture. 

4.3 Aggregation Module (LINEAR or TRAP) 
    A difficulty hindering the combination of different resources is 
how to combine them. This study investigates the two methods: (1) 
a simple aggregation (linear model) and (2) a trap model, which is 
the proposed method. 

4.3.1 LINEAR Model 
    A simple method to use indirect information is how to aggregate 
different types of information. In this model, we weight the direct 
information as more important than the indirect information. 
    We formalize the number of patients !"#$%&' (, *  in area a at day 
t as follows: 

!"#$%&' (, * 	
= -./0 ∙ 234 (, * + -/'67 ∙ 389: (, * + -#$; !<=((, ?, *)A∈& 	 (1) 

4 http://maps.google.com 
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where GPS(a,t) is the number of tweets with GPS information. 
PROF(a,t) is the number of tweets with profile information. 
IND(a,b,t) is the number of tweets with indirect information. wGPS , 
wPROF and wIND are weight parameters. 
4.3.2 TRAP Model 
    This model includes the following two assumptions. 

1. People prefer a new event, and are insensitive to an already-  
    propagated event. 
2. The degree of propagation (popularity) is correlated with the  

          amount of indirect information. 
    The first assumption derives from human nature: people hesitate 
to inform others of an already known fact. For example, if the 
Twitter stream is full of repeated influenza information, then such 
a situation dampens enthusiasm to tweet similar information. 
    The second assumption comes from the features of Twitter. Most 
indirect information consists of RT or news information, which 
tends to delay the direct information. The volume of this type of 
information corresponds to the volume of people who never tweet. 
    Based on those two assumptions, in the early stage of a season, 
most social sensors are “activated” to report the influenza precisely 
(Fig. 6(a)). Because the indirect information spreads widely, most 
people become “inactivated” to the event (Fig. 6(b)). We designate 
such inactivated people as trapped sensors. Under these 
circumstances, even the number of influenza tweets is small. The 
number of patients might be larger than the tweet volume because 
a trapped sensor might disregard the influenza. 
    We formalize the number of patients !C'&/ (, *  in area a at day 
t using a popularity function, pop(a,t), as 

!C'&/ (, * = 	#DEFGHI J,K

	LMNGIN∙$OPLQIHR∙STU( VWV J,K XY)
 � (2) 

Z[Z (, * = !<=((, \)K
]^Y   

where !"#$%&' (, *  is the linear model (see equation (1) in Section 
4.3.1), variable Na is set based on the number of the potential active 
tweeting users defined by the number of tweets. wUSERS and wTRAP 
are weight parameters. A function, pop(a,t), represents the degree 
of popularity of a crowd’s attention to the influenza. 

5. EXPERIMENTS 
    These experiments used the Japanese inflectional disease data. 
5.1 Test Data and Gold Standard Data 
    For the experiments, we used the corpus described in Section 3.1 
as a test set. As gold standard data, we used data reported by the 
Infectious Disease Surveillance Center (IDSC). The report has been 
released once a week. To conduct a daily basis evaluation, the 
average value was used for interpolation. 
    Because influenza is a seasonal disease, we split the tweet data 
into three seasons based on the IDSC’s data as introduced in 
Section 3.2. 
5.2 Methods 
    We compared four methods as described below. 

l TRAP: TRAP is the proposed model, which detects disease 
epidemics by considering the balance between direct 
information (GPS information and profile information) and 
indirect information (referred location). In these experiments, 
we set Na to a value based on the number of potential active 
tweeting users for equation (2) in Section 4.3.2. Then we set the 
weight parameters wUSERS and wTRAP to 0.05 and 0.2, 
respectively, based on results of preliminary experiments. 

l LINEAR: LINEAR is a model that uses GPS information, 
profile information, and indirect location information together. 
In these experiments, weight parameters wGPS, wPROP and wIND 
in equation (1) in Section 4.3 are set to 1.0. 

l BASELINE+PROF: This is a baseline method presented in 
[16]. This approach uses GPS information and profile location.  

IBASE+PROF(a,t)=GPS(a,t)+PROF(a,t). 

l BASELINE: This is the simple baseline, using only GPS 
information.  

IBASE(a,t)=GPS(a,t). 

    In addition to evaluation of the effectiveness of positive/negative 
classification (NLP technique), we also conducted with/without test. 
This test brings us the 8 (=4×2) as shown in Table 4.  
5.3 Evaluation Metric 
    The evaluation metric is based on correlation (Pearson 
correlation coefficient) between the gold standard values and the 
estimated values. The correlation coefficient Correl(.) for a given 
data array consisting of the gold standard data and the data by a 
comparable method, i.e. {(GOLDa,t,TRAPa,t)} (a�A, t�SEASON 

Table 4: Experimental methods 
Method NLP GPS PROF IND 

TRAP+NLP � � � � 

TRAP  � � � 

LINEAR+NLP � � � � 

LINEAR  � � � 

EMNLP2011 [16] 
(BASELINE+PROF+NLP) 

� � �  

BASELINE+PROF  � �  

BASELINE +NLP � �   

BASELINE  �   

*NLP is the positive/negative classifier, GPS is GPS information, LOC is 
profile information, and IND is indirect information. 
 

 

Fugue 6: Concept image of TRAP model. (a) People actively 
report the influenza before epidemics. (b) However, most people 
lose interest to share the direct information after epidemics, 
because lots of indirect information have been already existed. In 
the proposed model, we call such people Trapped Sensors.  
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2012) is computed as a data array consisting of values of the gold 
standard data and values computed using TRAP model in an area a 
on each day t in SEASON2012. 
    Gold standard data are based on the number of patients. The 
system outputs the values based on the number of tweets. Although 
the scales mutually differ, they are not biased under the correlation-
based evaluation. We regard high correlation as |r|>0.7, medium 
correlation as 0.4<|r|≤0.7, and low correlation as |r|≤0.4.  
    Evaluation is done for four durations: (1) SEASON2102, (2) 
SEASON2013, (3) SEASON2014, and (4) SEASON-TOTAL (all 
(1)-(3)). 
5.4 Results 
    Table 5 presents the results. Table 5(a) and Table 5(b) 
respectively present the correlation coefficients of methods with 
and without NLP for the gold standard data. Specifically, we 
discuss these results in terms of contributions of NLP-based 
classification (Section 5.4.1), profile location (Section 5.4.2), 
LINEAR model (Section 5.4.3), and TRAP model (Section 5.4.4). 

5.4.1 Contribution of NLP-based Classification 
(TRAP vs. TRAP+NLP) 

    To evaluate the contribution of NLP for positive and negative 
classification, we compare results of TRAP in Table 5(b) and 
TRAP+NLP in Table 5(a). Although both methods are strongly 
correlated with the gold standard data, mostly TRAP+NLP (r=0.70 
in SEASON-TOTAL) is higher than TRAP (r=0.64). This result 
demonstrates the contribution of NLP. 
    Although almost half of the tweets are removed using NLP 
classification, it works well for estimating influenza epidemics. It 
might indicate that the NLP classification in this domain (influenza 
or not) is easy, so it must be improved. 
    Not only for TRAP+NLP but also all other methods with NLP 
(BASELINE+NLP, EMNLP2011, and LINEAR+NLP) achieved 
better detection performance using the NLP classifier. 
5.4.2 Contribution of Profile Information 
(BASELINE+NLP vs. BASELINE+PROF+NLP) 
    To evaluate the contribution of profile information, we compare 
BASELINE+NLP and EMNLP2011 (BASELINE+ PROF+NLP). 
As shown in Table 5(a), the correlation coefficient of EMNLP2011 
(r=0.69 in SEASON-TOTAL) is much higher than that of the 

 
Figure 7: Temporal changes of positive influenza tweets for three SEASONs in 6 prefectures, Japan. The y-axis shows the ratio of tweets; 
the x-axis is time from the beginning of SEASON2012 to the end of SEASON2014. The red line represents by our system. The light red 
bar shows the gold standard data. The black dotted line shows results by baseline. 
 

 
Figure 8: Relation of the number of tweets (blue bar) and correlation coefficient of TRAP+NLP (red line) and EMNLP2011 (dotted black 
line) for each area. Areas are ordered by populations based on the number of tweets. The x-axis shows the area. The y-axis indicates the 
correlation coefficient (left side) and the number of tweets (right side). In most of all areas, the proposed approach (TRAP+NLP) shows a 
higher correlation ratio than the previous system BASELINE+PROF, which is proposed in EMNLP2011. 
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BASELINE+NLP (r=0.36) through all SEASON. This fact 
suggests that the profile information is highly related to improve 
the performance in detection of influenza epidemics. 
    As described above, both NLP classification and profile 
information improved the performance to detect influenza 
epidemics. This result shows the combination of these techniques 
(EMNLP2011) achieved higher performance. 
5.4.3 Contribution of Indirect Information in 
LINEAR Model (BASELINE+PROF+NLP vs. 
LINEAR+NLP) 
    To evaluate the contribution of indirect information in LINEAR 
model, we compare the performance of EMNLP2011 
(BASELINE+PROF+NLP) and LINEAR+NLP. Although the 
performance of both methods is medium, the correlation coefficient 
of LINEAR+NLP (r=0.50 in SEASON-TOTAL) is lower than 
EMNLP2011 (r=0.69) through all SEASONs as shown in Table 
5(a). This point indicates the difficulty of detecting influenza 
epidemics solely by adding indirect information in a naive manner. 
5.4.4 Contribution of Indirect Information in TRAP 
Model (BASELINE+PROF+NLP vs. TRAP+NLP) 
    To evaluate the proposed model, the TRAP model, we compare 
the respective performances of TRAP+NLP and EMNLP2011 
(BASELINE+PROF+NLP), which were better than 
LINEAR+NLP in Section 5.4.3.  
    Actually, TRAP+NLP shows the highest correlation coefficient 
among methods (underlined in Table 5), indicating that it achieved 
the best performance of influenza epidemic detection for the gold 

standard data, which in turn suggests that TRAP model methods 
effectively contribute to exploitation of both direct and indirect 
information from social sensors for detecting disease epidemics 
accurately. 

6. DISCUSSION 
6.1 After the Boom No One Tweets 
    The fact that TRAP model outperforms the LINEAR model 
indicates that if influenza becomes a hot topic, people do not talk 
about it, which suggests the aspect of human nature by which 
people become bored quickly with news. From a psychological 
viewpoint, similar phenomena were so far proposed. Most showed 
rapid propagation of rumors (especially bad news) and its short life 
[39–41]. Among various social media services, Twitter is an 
extremely “fast” media. Thereby, the life of news might be shorter 
than other existing news. In other words, people might hesitate to 
tweet an already-known fact. 
    This report is the first of a study that handles such human nature 
using a statistical model. This model has sufficient room for 
application to additional studies. For example, we simply regard the 
simulation of the referred tweet as news. Better methods using other 
media, such news web site information, are reasonable. The manner 
of estimation of the potential tweet users can also improve by 
consideration of more realistic data. 
6.2 Effectiveness of Each Module 
    From the experimentally obtained results presented in Section 5, 
we were able to observe three findings as described below. 
(1) Effectiveness of NLP (Section 6.2.1) 
(2) Effectiveness of location detection (Section 6.2.2) 
(3) Effectiveness of aggregation by TRAP model (Section 6.2.3) 
As described in Section 1, one novelty of this study is high-
resolution geographic analysis. In this section, we discuss the 
effectiveness for each prefecture. Fig. 7 portrays temporal changes 
of the gold standard data (light red bar) and results of TRAP+NLP 
(red line) and LINEAR+NLP (black dotted line) for three 
SEASONs in 47 prefectures, Japan. 
6.2.1 Effectiveness of NLP-based Classification 
    We discuss the effectiveness of NLP-based classification by 
comparing the performance of the methods with NLP in Top-10 
high population areas in Table 5(a) with that of the methods without 
NLP in Top-10 low population areas in Table 5(b). The rank of 
population of areas is presented in Fig. 8. 
    In urban areas such as Tokyo and Osaka, the TRAP model 
performance was sufficiently high. In fact, the correlation 
coefficient of TRAP was equal or higher than 0.7. Regarding other 
results, all correlation coefficient values were higher than 0.5, 
reflecting medium correlation. 
    However, in more rural areas such as Shimane and Toyama, no 
drastic improvement was observed using NLP. Especially, little 
difference in performance was found between BASELINE+NLP 
and BASELINE. However, we were able to say that NLP never 
worsened the performance motivating the use of NLP. 
6.2.2 Effectiveness of Location Detection 
    The proposed method uses location information of three types: 
not only GPS information and profile information used in previous 
studies but also referred location. We discussed the effects of 
exploiting the referred location (as indirect information) as well as 
GPS information and profile information (as direct information). 
From Table 5(a), we observed that the indirect information might 
be not so important in high population areas such as Tokyo and 
Osaka. For example, EMNLP2011 realized high correlation (r>0.7) 

Table 5: Values of correlation coefficient r of methods 
with/without NLP. Moderate correlation (|r|>0.7) is shown in bold. 
Highest correlation coefficient in each target area and each 
SEASON is underlined.  

(a) With NLP 
Target Method SEASON

2012 
SEASON
2013 

SEASON
2014 

SEASON 
TOTAL 

All areas 

TRAP+NLP  0.76  0.70  0.69  0.70  
LINEAR+NLP 0.70  0.55  0.53  0.50  
EMNLP2011  0.74  0.68  0.67  0.69  
BASELINE+NLP 0.33  0.37  0.48  0.36  

High 
population 
areas  
(Top 10) 

TRAP+NLP  0.80  0.77  0.72  0.75  
LINEAR+NLP 0.78  0.65  0.64  0.64  
EMNLP2011  0.80  0.77  0.71  0.75  
BASELINE+NLP 0.55  0.60  0.63  0.53  

Low 
population 
areas  
(Top 10) 

TRAP+NLP  0.75  0.66  0.71  0.69  
LINEAR+NLP 0.62  0.46  0.48  0.43  
EMNLP2011  0.70  0.61  0.65  0.64  
BASELINE+NLP 0.21  0.26  0.35  0.25 

(b) Without NLP 
Target Method SEASON 

2012 
SEASON 
2013 

SEASON 
2014 

SEASON 
TOTAL 

All areas 

TRAP 0.72 0.63 0.64 0.64 
LINEAR 0.65 0.48 0.53 0.48 
BASELINE+PROF 0.69 0.59 0.66 0.64 
BASELINE 0.29 0.34 0.48 0.35 

High 
population 
areas  
(Top 10) 

TRAP 0.75 0.69 0.70 0.70 
LINEAR 0.72 0.60 0.63 0.61 
BASELINE+PROF 0.75 0.69 0.70 0.70 
BASELINE 0.44 0.56 0.63 0.50 

Low 
population 
areas  
(Top 10) 

TRAP 0.71 0.61 0.53 0.57 
LINEAR 0.58 0.41 0.46 0.40 
BASELINE+PROF 0.65 0.52 0.65 0.59 
BASELINE 0.20 0.23 0.35 0.25 
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in urban areas on average. In such areas, even BASELINE+NLP 
only using GPS information has medium correlation. 
    In contrast, using indirect information is effective in rural areas. 
Although EMNLP2011 was determined just medium correlation 
(r≤0.7) through all SEASONs, TRAP+NLP showed high 
correlation in SEASON2012 and SEASON2014, as shown in Table 
5(a). Results of SEASON2013 might be affected by the lack of 
tweet data, as shown in Table 2. 
    This result might be caused by a common pattern by which much 
direct information was available in urban areas. In contrast, because 
a sufficient amount of direct information is not available from rural 
areas, there is some lack of exploiting indirect information.  
6.2.3 Effectiveness of Aggregation by TRAP Model 
    We discuss the effectiveness of the TRAP model by comparing 
correlation coefficients of the Top-10 high population areas and the 
one in Top-10 low population areas in Table 5(a). 
    In urban areas, the performance of two methods related to the 
TRAP model (TRAP+NLP and TRAP) was the highest among the 
others. Correlation coefficients of two methods related to LINEAR 
model (LINEAR+NLP and LINEAR) were less than 0.7, except in 
SEASON2012. For example, as for TOKYO (AREA13) and 
OSAKA (AREA27) in Fig. 7, TRAP+NLP matches the gold 
standard data well. In contrast, LINEAR+NLP has some gaps. 
These results confirm the TRAP model effectiveness for tweets of 
urban areas. 
    In rural areas, the performance of the methods related to TRAP 
model (TRAP+NLP and TRAP) was also the highest. Most of the 
correlation coefficients were higher than 0.6. Especially, the 
performance of TRAP+NLP in rural areas was higher than that of 
LINEAR+NLP in urban areas on average. For example, for 
SHIMANE (AREA32) and TOYAMA (AREA18) in Fig. 7, the 
results of both TRAP+NLP and LINEAR+NLP in SEASON2012 
match with the gold standard well. However, the results in other 
SEASONs partially have gaps. The results of LINEAR+NLP are 
affected by the small numbers of tweets. For such areas, we 
improve the performance by adjusting the weight parameters 
adequately. 
    Overall, we were confirmed the effectiveness of aggregation 
using the TRAP model, which does not use three location 
information in the same way, but which distinguishes referred 
location as indirect information and use in a different way. 
6.3 Relation between Volume of Tweets and 
Performance 
    The relation between population and the detection performance 
presents an important finding. Fig. 8 presents the relation between 
each area’s population (blue bar) and performance (lines). The 
population is the number of tweets. The performance is the 
correlation coefficient. This figure compares TRAP+NLP (red line) 
with EMNLP2011 (dotted black line). 
    Results show that the performance of TRAP+NLP was higher 
than that of EMNLP2011 in urban areas. Specifically, the top 17 
high population areas (from TOKYO (AREA13) to IBARAKI 
(AREA8)) exhibited high correlation (r>0.7). In these areas, more 
than 400 tweets were emitted.  
    However, other areas have large variance of performance. 
Although both methods sometimes stagnate the same level 
performance, TRAP+NLP mostly outperforms EMNLP2011. In 
AOMORI (AREA2), NAGANO (AREA17), OITA (AREA44), 
NAGASAKI (AREA42) and YAMANASHI (AREA16), the 
TRAP model achieved higher performance (r>0.7) than 
EMNLP2011(r≤0.7). For example, one typical example is 
AOMORI of SEASON2012 and SEASON2013. The graph of 
AOMORI in Fig. 7 shows that TRAP+NLP was able to detect a 

high level of continuous epidemic in SEASON2013, indicating the 
effectiveness of the TRAP model. However, as described 
previously, sometimes it was unable to detect tweets after an 
epidemic, which remains as a subject of future work.  
    Although the TRAP model achieved higher performance than 
EMNLP2011, the performance was of a medium level (0.4 < c ≤
0.7 ) in NIIGATA (AREA15), FUKUI (AREA 20), TOCHIGI 
(AREA 9), MIE (AREA24), IWATE (AREA 3), KAGOSHIMA 
(AREA 46) and ten other areas. For example, the graph of FUKUI 
in Fig. 7 shows that TRAP+NLP was unable to detect the sequential 
influenza epidemics in SEASON2012. There were gaps in other 
SEASONs. Therefore, the average performance through all 
SEASONs was medium. In only one (KUMAMOTO (AREA 43)), 
TRAP exhibited poorer performance than EMNLP2011 in 
SEASON2013 (see KUMAMOTO in Fig. 8). One of the reasons is 
medical treatment failure in Kumamoto in the SEASON. Even that 
was a domestic news, but tons of news on the failure appeared in 
Twitter stream, causing the bias.  
    Results show strong advantages of TRAP+NLP in high 
population areas. More importantly, TRAP+NLP never shows 
worse performance, except in one area. These findings are expected 
to contribute to similar SNS-based surveillance. 
6.4 Toward Improvement of Detection 
Performance and Realization of Epidemic 
Prediction 
    To improve the detection performance of disease epidemics, it is 
important to implement functions that enable consideration of 
various effects related to geographic relations among areas: 
adjacency (neighborhood or not), accessibility (easy to access or 
not), isolation (island or not) and so on. 
    This study was conducted to elucidate the current situation of 
disease epidemics. To predict the spread of disease, we must 
develop the proposed method through integration with various 
prediction models such as SIR and FUNNEL presented in a report 
of an earlier study [42]. Therefore, we can identify outbreaks of 
infectious diseases with high accuracy before a wider outbreak. 

7. CONCLUSIONS 
    This paper proposed a novel approach that uses the locations 
described. This system used not only direct information, but also 
indirect information that mention other places. We assumed a 
model by which the indirect information inhibits direct information. 
In this experiment performed for high-resolution areas (prefecture 
level), this proposed approach exhibited improved the detection 
performance not only in rural cities, but also in urban cities, which 
demonstrated the effectiveness of the proposed method consisting 
of a TRAP model and NLP classification. This report is the first of 
a study that assesses handling of human reactions to a new event. 
This model offers sufficient room for additional study. 
    Future work will examine worldwide influenza surveillance. 
Furthermore, we plan to apply this method to other epidemic 
surveillances and to establish a novel method by integrating various 
models for their accurate prediction. 
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